Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.022
Filtrar
1.
Sci Rep ; 14(1): 10362, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710832

RESUMO

POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, monoclonal protein [M-protein], and skin changes) is a rare systemic disorder characterized by various symptoms caused by underlying plasma cell (PC) dyscrasia. Detection of monoclonal PCs is mandatory for the diagnosis of POEMS syndrome; however, the usefulness of EuroFlow-based next-generation flow cytometry (EuroFlow-NGF) in POEMS syndrome for detecting monoclonal PCs in bone marrow (BM) and the gating strategy suitable for flow cytometry study of POEMS syndrome remain unknown. We employed EuroFlow-NGF-based single-tube eight-color multiparameter flow cytometry (MM-flow) and established a new gating strategy (POEMS-flow) to detect the monoclonal PCs in POEMS syndrome, gating CD38 broadly from dim to bright and CD45 narrowly from negative to dim compared to MM-flow. MM-flow detected monoclonal PCs in 9/25 (36.0%) cases, including 2/2 immunofixation electrophoresis (IFE)-negative cases (100%). However, POEMS-flow detected monoclonal PCs in 18/25 cases (72.0%), including 2/2 IFE-negative cases (100%). POEMS-flow detected monoclonal PCs with immunophenotypes of CD19- in 17/18 (94.4%). In six cases where post-treatment samples were available, the size of the clones was significantly reduced after the treatment (P = 0.031). POEMS-flow can enhance the identification rate of monoclonal PCs in POEMS syndrome and become a valuable tool for the diagnosis of POEMS syndrome.


Assuntos
Citometria de Fluxo , Síndrome POEMS , Plasmócitos , Síndrome POEMS/diagnóstico , Humanos , Citometria de Fluxo/métodos , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Plasmócitos/metabolismo , Plasmócitos/patologia , Adulto , Imunofenotipagem/métodos , Medula Óssea/patologia
2.
Front Immunol ; 15: 1340001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680492

RESUMO

Germinal center (GC) responses are essential for establishing protective, long-lasting immunity through the differentiation of GC B cells (BGC) and plasma cells (BPC), along with the generation of antigen-specific antibodies. Among the various pathways influencing immune responses, the STING (Stimulator of Interferon Genes) pathway has emerged as significant, especially in innate immunity, and extends its influence to adaptive responses. In this study, we examined how the STING ligand cGAMP can modulate these key elements of the adaptive immune response, particularly in enhancing GC reactions and the differentiation of BGC, BPC, and follicular helper T cells (TFH). Employing in vivo models, we evaluated various antigens and the administration of cGAMP in Alum adjuvant, investigating the differentiation of BGC, BPC, and TFH cells, along with the production of antigen-specific antibodies. cGAMP enhances the differentiation of BGC and BPC, leading to increased antigen-specific antibody production. This effect is shown to be type I Interferon-dependent, with a substantial reduction in BPC frequency upon interferon (IFN)-ß blockade. Additionally, cGAMP's influence on TFH differentiation varies over time, which may be critical for refining vaccine strategies. The findings elucidate a complex, antigen-specific influence of cGAMP on T and B cell responses, providing insights that could optimize vaccine efficacy.


Assuntos
Diferenciação Celular , Centro Germinativo , Proteínas de Membrana , Nucleotídeos Cíclicos , Transdução de Sinais , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Animais , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/imunologia , Diferenciação Celular/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Ativação Linfocitária/imunologia , Plasmócitos/imunologia , Plasmócitos/metabolismo
3.
Cell Rep ; 43(4): 114045, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38578826

RESUMO

Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.


Assuntos
Linfócitos B , Doença Celíaca , Proteínas de Ligação ao GTP , Imunoglobulina A , Plasmócitos , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Doença Celíaca/imunologia , Doença Celíaca/patologia , Humanos , Transglutaminases/imunologia , Transglutaminases/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Imunoglobulina A/sangue , Linfócitos B/imunologia , Linfócitos B/metabolismo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Proteínas de Ligação ao GTP/imunologia , Proteínas de Ligação ao GTP/metabolismo , Autoanticorpos/imunologia , Autoanticorpos/sangue , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Glutens/imunologia
4.
Int Immunopharmacol ; 131: 111803, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38460298

RESUMO

Plasma cell mastitis (PCM) is a sterile inflammatory condition primarily characterized by periductal inflammation and ductal ectasia. Currently, there is a lack of non-invasive or minimally invasive treatment option other than surgical intervention. The NLRP3 inflammasome has been implicated in the pathogenesis and progression of various inflammatory diseases, however, its involvement in PCM has not yet been reported. In this study, we initially observed the pronounced upregulation of NLRP3 in both human and mouse PCM tissue and elucidated the mechanism underlying the attenuation of PCM through inhibition of NLRP3. We established the PCM murine model and collected samples on day 14, when inflammation reached its peak, for subsequent research purposes. MCC950, an NLRP3 inhibitor, was utilized to effectively ameliorate PCM by significantly reducing plasma cell infiltration in mammary tissue, as well as attenuate the expression of pro-inflammatory cytokines including IL-1ß, TNF-α, IL-2, and IL-6. Mechanistically, we observed that MCC950 augmented the function of myeloid-derived suppressor cells (MDSCs), which in turn inhibited the infiltration of plasma cells. Furthermore, it was noted that depleting MDSCs greatly compromised the therapeutic efficacy of MCC950. Collectively, our findings suggest that the administration of MCC950 has the potential to impede the progression of PCM by augmenting MDSCs both numerically and functionally, ultimately treating PCM effectively. This study provides valuable insights into the utilization of pharmacological agents for PCM treatment.


Assuntos
Indenos , Mastite , Células Supressoras Mieloides , Feminino , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Supressoras Mieloides/metabolismo , Plasmócitos/metabolismo , Sulfonas/farmacologia , Sulfonamidas/uso terapêutico , Sulfonamidas/farmacologia , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Mastite/tratamento farmacológico , Furanos/uso terapêutico , Furanos/farmacologia
5.
Nature ; 626(8001): 1102-1107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355795

RESUMO

Plasma cells produce large quantities of antibodies and so play essential roles in immune protection1. Plasma cells, including a long-lived subset, reside in the bone marrow where they depend on poorly defined microenvironment-linked survival signals1. We show that bone marrow plasma cells use the ligand-gated purinergic ion channel P2RX4 to sense extracellular ATP released by bone marrow osteoblasts through the gap-junction protein pannexin 3 (PANX3). Mutation of Panx3 or P2rx4 each caused decreased serum antibodies and selective loss of bone marrow plasma cells. Compared to their wild-type counterparts, PANX3-null osteoblasts secreted less extracellular ATP and failed to support plasma cells in vitro. The P2RX4-specific inhibitor 5-BDBD abrogated the impact of extracellular ATP on bone marrow plasma cells in vitro, depleted bone marrow plasma cells in vivo and reduced pre-induced antigen-specific serum antibody titre with little posttreatment rebound. P2RX4 blockade also reduced autoantibody titre and kidney disease in two mouse models of humoral autoimmunity. P2RX4 promotes plasma cell survival by regulating endoplasmic reticulum homeostasis, as short-term P2RX4 blockade caused accumulation of endoplasmic reticulum stress-associated regulatory proteins including ATF4 and B-lineage mutation of the pro-apoptotic ATF4 target Chop prevented bone marrow plasma cell demise on P2RX4 inhibition. Thus, generating mature protective and pathogenic plasma cells requires P2RX4 signalling controlled by PANX3-regulated extracellular ATP release from bone marrow niche cells.


Assuntos
Trifosfato de Adenosina , Células da Medula Óssea , Plasmócitos , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Autoanticorpos/imunologia , Autoimunidade/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linhagem da Célula , Conexinas/genética , Conexinas/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Mutação , Osteoblastos/metabolismo , Plasmócitos/citologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Transdução de Sinais
6.
Sci Rep ; 14(1): 3616, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350990

RESUMO

Following infection or vaccination, early-minted antibody secreting cells (ASC) or plasmablasts appear in circulation transiently, and a small fraction migrates to the spleen or bone marrow (BM) to mature into long-lived plasma cells (LLPC). While LLPC, by definition, are quiescent or non-dividing, the majority of blood ASC are thought to be "blasting" or proliferative. In this study, we find > 95% nascent blood ASC in culture express Ki-67 but only 6-12% incorporate BrdU after 4 h or 24 h labeling. In contrast, < 5% BM LLPC in culture are Ki-67+ with no BrdU uptake. Due to limitations of traditional flow cytometry, we utilized a novel optofluidic technology to evaluate cell division with simultaneous functional IgG secretion. We find 11% early-minted blood ASC undergo division, and none of the terminally differentiated BM LLPC (CD19-CD38hiCD138+) divide during the 7-21 days in culture. While BM LLPC undergo complete cell cycle arrest, the process of differentiation into an ASC or plasmablasts also discourages entry into S phase. Since the majority of Ki-67+ nascent blood ASC have exited cell cycle and are no longer actively "blasting", the term "plasmablast", which traditionally refers to an ASC that still has the capacity to divide, may probably be a misnomer.


Assuntos
Medula Óssea , Plasmócitos , Humanos , Plasmócitos/metabolismo , Antígeno Ki-67 , Medula Óssea/metabolismo , Imunoglobulina G , Antígenos CD19/metabolismo
7.
Sci Transl Med ; 16(728): eadd5960, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170789

RESUMO

Durable humoral immunity is mediated by long-lived plasma cells (LLPCs) that reside in the bone marrow. It remains unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein vaccination is able to elicit and maintain LLPCs. Here, we describe a sensitive method to identify and isolate antigen-specific LLPCs by tethering antibodies secreted by these cells onto the cell surface. Using this method, we found that two doses of adjuvanted SARS-CoV-2 spike protein vaccination are able to induce spike protein-specific LLPC reservoirs enriched for receptor binding domain specificities in the bone marrow of nonhuman primates that are detectable for several months after vaccination. Immunoglobulin gene sequencing confirmed that several of these LLPCs were clones of memory B cells elicited 2 weeks after boost that had undergone further somatic hypermutation. Many of the antibodies secreted by these LLPCs also exhibited improved neutralization and cross-reactivity compared with earlier time points. These findings establish our method as a means to sensitively and reliably detect rare antigen-specific LLPCs and demonstrate that adjuvanted SARS-CoV-2 spike protein vaccination establishes spike protein-specific LLPC reservoirs.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Plasmócitos/metabolismo , Anticorpos Antivirais , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Adjuvantes Imunológicos , Primatas , Anticorpos Neutralizantes
9.
Curr Probl Cancer ; 48: 101025, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951052

RESUMO

INTRODUCTION: Circulating plasma cells (CPCs) are frequently noted in variable frequencies in the entire spectrum of plasma cells neoplasms. With advent of high sensitivity multi-parametric flow cytometry, it is not only possible to detect CPCs present in very low numbers, but also to categorise them into circulating tumor plasma cells (CTPCs) and circulating normal plasma cells (CNPCs), based on their marker-profile. This study used multi-colour flow cytometry to evaluate the load of both CTPCs & CNPCs at the time of diagnosis and at six months' time-point of therapy, and evaluated associations of both with clinical and laboratory parameters. METHODS: Twenty one newly diagnosed MM patients were enrolled. Six to nine millilitres of EDTA-anticoagulated peripheral blood sample was used for flow cytometry. A ten colour antibody panel was used for analysis of CPCs, which were categorised further into CTPCs and CNPCs. Approximately 4.8 million events were acquired for the analysis. The percentage &absolute numbers of CTPCs and CNPCs were noted and the proportion of CTPCs out of all CPCs (CTPCs + CNPCs) were also calculated for evaluating their statistical associations. RESULTS: All 21 patients of newly diagnosed MM showed presence of CPCs (CTPCs and/or CNPCs) at the time of diagnosis. The CTPCs were detected in 76 % of the study population. The median percentage and absolute counts of CTPCs were 0.52 % and 54.9 cells /µL, respectively. CNPCs were found in 95 % and the median percentage and absolute counts of CNPCs were 0.025 % and 2.66 cells/µL. After six months of therapy, CPCs (CTPCs and/or CNPCs) were found in all nine patients evaluated for this assay. CTPCs were found 33 %, with a median of 0.075 % and CNPCs were found in 89 % with a median of 0.01 %. Our study showed that the load of CTPCs was found to be higher in patients with presence of lytic bone lesions, plasmacytoma, presence of PCs on peripheral blood film by light microscopy, presence of Chr 1p32 deletion, expression of CD56 and CD81 on CTPCs, and in patients with absence of very good partial response (VGPR). Conversely, the load of CTPCs was significantly lower in patients with concomitant amyloidosis. Also, percentage of bone marrow plasma cells exhibited a significant positive correlation with the absolute count of CTPCs. We observed that the mean percentage of CNPCs was significantly higher in female patients. The load of CNPCs was lower in patients with thrombocytopenia and with hypoalbuminemia. CONCLUSION: Increased burden of CTPCs was associated with presence of lytic lesions, plasmacytomas, Chr 1p32 deletion, expression of CD56 and CD81 on tumor cells and with failure to achieve very good partial response. The CNPCs were lower in patients with thrombocytopenia and with hypoalbuminemia. To best ot our knowledge, this is the first study from India on the relevance of circulating tumor plasma cells and the first study in the world to analyse the associations of circulating normal plasma cells in newly diagnosed patients of multiple myeloma. The study also highlights the utility of multi-parametric flow cytometry in identification and enumeration of circulating plasma cells. MICRO ABSTRACT: Circulating plasma cells indicates poorer outcomes in patients of multiple myeloma. Twenty one newly diagnosed multiple myeloma patients were evaluated by flow cytometry to enumerate and characterise circulating tumor plasma cells (CTPCs) and circulating normal plasma cells (CNPCs). Higher load of CTPCs correlated with known poor prognostic markers and poor response to therapy.


Assuntos
Hipoalbuminemia , Mieloma Múltiplo , Plasmocitoma , Trombocitopenia , Humanos , Feminino , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Plasmócitos/metabolismo , Plasmócitos/patologia , Hipoalbuminemia/metabolismo , Hipoalbuminemia/patologia , Prognóstico , Plasmocitoma/patologia , Trombocitopenia/metabolismo , Trombocitopenia/patologia
10.
Acta Biochim Biophys Sin (Shanghai) ; 55(11): 1730-1739, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37814814

RESUMO

Ulcerative colitis (UC) develops as a result of complex interactions between various cell types in the mucosal microenvironment. In this study, we aim to elucidate the pathogenesis of ulcerative colitis at the single-cell level and unveil its clinical significance. Using single-cell RNA sequencing and high-dimensional weighted gene co-expression network analysis, we identify a subpopulation of plasma cells (PCs) with significantly increased infiltration in UC colonic mucosa, characterized by pronounced oxidative stress. Combining 10 machine learning approaches, we find that the PC oxidative stress genes accurately distinguish diseased mucosa from normal mucosa (independent external testing AUC=0.991, sensitivity=0.986, specificity=0.909). Using MCPcounter and non-negative matrix factorization, we identify the association between PC oxidative stress genes and immune cell infiltration as well as patient heterogeneity. Spatial transcriptome data is used to verify the infiltration of oxidatively stressed PCs in colitis. Finally, we develop a gene-immune convolutional neural network deep learning model to diagnose UC mucosa in different cohorts (independent external testing AUC=0.984, sensitivity=95.9%, specificity=100%). Our work sheds light on the key pathogenic cell subpopulations in UC and is essential for the development of future clinical disease diagnostic tools.


Assuntos
Colite Ulcerativa , Aprendizado Profundo , Humanos , Colite Ulcerativa/genética , Plasmócitos/metabolismo , Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo
11.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894900

RESUMO

Due to a higher mutational load, triple-negative breast cancer (TNBC) is characterized by a higher immunogenicity compared to other subtypes. In this context, we analyzed the prognostic significance of tumor-infiltrating plasma cells in a cohort of 107 triple-negative breast cancer patients. Tumor-infiltrating plasma cells were analyzed via immunohistochemistry using the plasma cell markers CD38 and IgκC. The prognostic impact of the CD38 and IgκC expression was evaluated using the Kaplan-Meier plots and Cox regression analyses. A Spearman-Rho correlation coefficient was used to evaluate a possible association between plasma cell infiltration and the BRCA mutation status. The study cohort consisted of 107 patients with early-stage TNBC, who were treated between 2009 and 2016 at the Department of Gynecology and Obstetrics, University Medical Center Mainz, Germany. The median follow-up was five years. The Kaplan-Meier survival analysis showed that higher tumor infiltration with CD38-positive plasma cells was associated with significantly longer metastasis-free survival (MFS) (p = 0.039 Log Rank). In the multivariate Cox regression analysis for metastasis-free survival, in which additional clinicopathological factors (age, tumor size, nodal status, and grading) were considered, CD38 was identified as an independent prognostic factor within the analyzed cohort (HR 0.438, 95% CI 0.195-0.983; p = 0.045). In addition to the CD38 expression, the nodal status was also identified as an independent prognostic factor in multivariate Cox regression. Regarding the IgκC expression, a higher IgκC expression was shown to be associated with a better outcome, although this effect was not statistically significant. Furthermore, we were able to show a significant correlation between plasma cell infiltration and the BRCA mutation status. A favorable prognostic significance of tumor-infiltrating plasma cells could be demonstrated in triple-negative breast cancer immunohistochemically analyzed for the CD38 and IgκC expression. CD38 was identified as an independent prognostic factor via multivariate Cox regression.


Assuntos
Plasmócitos , Neoplasias de Mama Triplo Negativas , Humanos , Biomarcadores Tumorais/metabolismo , Intervalo Livre de Doença , Linfócitos do Interstício Tumoral/metabolismo , Plasmócitos/metabolismo , Prognóstico , Neoplasias de Mama Triplo Negativas/patologia
12.
Front Immunol ; 14: 1243997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744361

RESUMO

Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of clonal plasma cells in the bone marrow (BM). It is known that early genetic mutations in post-germinal center B/plasma cells are the cause of myelomagenesis. The acquisition of additional chromosomal abnormalities and distinct mutations further promote the outgrowth of malignant plasma cell populations that are resistant to conventional treatments, finally resulting in relapsed and therapy-refractory terminal stages of MM. In addition, myeloma cells are supported by autocrine signaling pathways and the tumor microenvironment (TME), which consists of diverse cell types such as stromal cells, immune cells, and components of the extracellular matrix. The TME provides essential signals and stimuli that induce proliferation and/or prevent apoptosis. In particular, the molecular pathways by which MM cells interact with the TME are crucial for the development of MM. To generate successful therapies and prevent MM recurrence, a thorough understanding of the molecular mechanisms that drive MM progression and therapy resistance is essential. In this review, we summarize key mechanisms that promote myelomagenesis and drive the clonal expansion in the course of MM progression such as autocrine signaling cascades, as well as direct and indirect interactions between the TME and malignant plasma cells. In addition, we highlight drug-resistance mechanisms and emerging therapies that are currently tested in clinical trials to overcome therapy-refractory MM stages.


Assuntos
Neoplasias Hematológicas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Plasmócitos/metabolismo , Medula Óssea/metabolismo , Evolução Clonal/genética , Microambiente Tumoral/genética
13.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37751306

RESUMO

Intratumoral B cell responses are associated with more favorable clinical outcomes in human pancreatic ductal adenocarcinoma (PDAC). However, the antigens driving these B cell responses are largely unknown. We sought to discover these antigens by using single-cell RNA sequencing (scRNA-Seq) and immunoglobulin (Ig) sequencing of tumor-infiltrating immune cells from 7 primary PDAC samples. We identified activated T and B cell responses and evidence of germinal center reactions. Ig sequencing identified plasma cell (PC) clones expressing isotype-switched and hypermutated Igs, suggesting the occurrence of T cell-dependent B cell responses. We assessed the reactivity of 41 recombinant antibodies that represented the products of 235 PCs and 12 B cells toward multiple cell lines and PDAC tissues and observed frequent staining of intracellular self-antigens. Three of these antigens were identified: the filamentous actin (F-actin), the nucleic protein RuvB like AAA ATPase 2 (RUVBL2), and the mitochondrial protein heat shock protein family D (Hsp60) member 1 (HSPD1). Antibody titers against F-actin and HSPD1 were substantially elevated in the plasma of patients with PDAC compared with healthy donors. Thus, PCs in PDAC produce autoantibodies reacting with intracellular self-antigens, which may result from promotion of preexisting, autoreactive B cell responses. These observations indicate the chronic inflammatory microenvironment of PDAC can support the adaptive immune response.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Plasmócitos/metabolismo , Autoantígenos , Actinas/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Microambiente Tumoral , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte , DNA Helicases/metabolismo
14.
Zhonghua Bing Li Xue Za Zhi ; 52(7): 702-709, 2023 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-37408401

RESUMO

Objective: To investigate the value of plasma cells for diagnosing lymph node diseases. Methods: Common lymphadenopathy (except plasma cell neoplasms) diagnosed from September 2012 to August 2022 were selected from the pathological records of Changhai Hospital, Shanghai, China. Morphological and immunohistochemical features were analyzed to examine the infiltration pattern, clonality, and IgG and IgG4 expression of plasma cells in these lymphadenopathies, and to summarize the differential diagnoses of plasma cell infiltration in common lymphadenopathies. Results: A total of 236 cases of lymphadenopathies with various degrees of plasma cell infiltration were included in the study. There were 58 cases of Castleman's disease, 55 cases of IgG4-related lymphadenopathy, 14 cases of syphilitic lymphadenitis, 2 cases of rheumatoid lymphadenitis, 18 cases of Rosai-Dorfman disease, 23 cases of Kimura's disease, 13 cases of dermal lymphadenitis and 53 cases of angioimmunoblastic T-cell lymphoma (AITL). The main features of these lymphadenopathies were lymph node enlargement with various degrees of plasm cell infiltration. A panel of immunohistochemical antibodies were used to examine the distribution of plasma cells and the expression of IgG and IgG4. The presence of lymph node architecture could help determine benign and malignant lesions. The preliminary classification of these lymphadenopathies was based on the infiltration features of plasma cells. The evaluation of IgG and IgG4 as a routine means could exclude the lymph nodes involvement of IgG4-related dieases (IgG4-RD), and whether it was accompanied by autoimmune diseases or multiple-organ diseases, which were of critical evidence for the differential diagnosis. For common lesions of lymphadenopathies, such as Castleman's disease, Kimura's disease, Rosai-Dorfman's disease and dermal lymphadenitis, the expression ratio of IgG4/IgG (>40%) as detected using immunhistochemistry and serum IgG4 levels should be considered as a standard for the possibility of IgG4-RD. The differential diagnosis of multicentric Castleman's diseases and IgG4-RD should be also considered. Conclusions: Infiltration of plasma cells and IgG4-positive plasma cells may be detected in some types of lymphadenopathies and lymphomas in clinicopathological daily practice, but not all of them are related to IgG4-RD. It should be emphasized that the characteristics of plasma cell infiltration and the ratio of IgG4/IgG (>40%) should be considered for further differential diagnosis and avoiding misclassification of lymphadenopathies.


Assuntos
Hiperplasia do Linfonodo Gigante , Doença Relacionada a Imunoglobulina G4 , Linfadenite , Linfadenopatia , Humanos , Hiperplasia do Linfonodo Gigante/diagnóstico , Hiperplasia do Linfonodo Gigante/patologia , Plasmócitos/metabolismo , Plasmócitos/patologia , China , Linfadenopatia/patologia , Inflamação/diagnóstico , Inflamação/patologia , Linfonodos/patologia , Diagnóstico Diferencial , Linfadenite/diagnóstico , Linfadenite/patologia , Imunoglobulina G/metabolismo
15.
Cell Rep Med ; 4(7): 101110, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37467717

RESUMO

Multiple myeloma (MM) is an incurable malignancy of plasma cells. To identify targets for MM immunotherapy, we develop an integrated pipeline based on mass spectrometry analysis of seven MM cell lines and RNA sequencing (RNA-seq) from 900+ patients. Starting from 4,000+ candidates, we identify the most highly expressed cell surface proteins. We annotate candidate protein expression in many healthy tissues and validate the expression of promising targets in 30+ patient samples with relapsed/refractory MM, as well as in primary healthy hematopoietic stem cells and T cells by flow cytometry. Six candidates (ILT3, SEMA4A, CCR1, LRRC8D, FCRL3, IL12RB1) and B cell maturation antigen (BCMA) present the most favorable profile in malignant and healthy cells. We develop a bispecific T cell engager targeting ILT3 that shows potent killing effects in vitro and decreased tumor burden and prolonged mice survival in vivo, suggesting therapeutic relevance. Our study uncovers MM-associated antigens that hold great promise for immune-based therapies of MM.


Assuntos
Mieloma Múltiplo , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Imunoterapia/métodos , Linfócitos T , Plasmócitos/metabolismo
16.
Clin Cancer Res ; 29(17): 3484-3497, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37410426

RESUMO

PURPOSE: Malignant peripheral nerve sheath tumors (MPNST) are lethal, Ras-driven sarcomas that lack effective therapies. We investigated effects of targeting cyclin-dependent kinases 4 and 6 (CDK4/6), MEK, and/or programmed death-ligand 1 (PD-L1) in preclinical MPNST models. EXPERIMENTAL DESIGN: Patient-matched MPNSTs and precursor lesions were examined by FISH, RNA sequencing, IHC, and Connectivity-Map analyses. Antitumor activity of CDK4/6 and MEK inhibitors was measured in MPNST cell lines, patient-derived xenografts (PDX), and de novo mouse MPNSTs, with the latter used to determine anti-PD-L1 response. RESULTS: Patient tumor analyses identified CDK4/6 and MEK as actionable targets for MPNST therapy. Low-dose combinations of CDK4/6 and MEK inhibitors synergistically reactivated the retinoblastoma (RB1) tumor suppressor, induced cell death, and decreased clonogenic survival of MPNST cells. In immune-deficient mice, dual CDK4/6-MEK inhibition slowed tumor growth in 4 of 5 MPNST PDXs. In immunocompetent mice, combination therapy of de novo MPNSTs caused tumor regression, delayed resistant tumor outgrowth, and improved survival relative to monotherapies. Drug-sensitive tumors that regressed contained plasma cells and increased cytotoxic T cells, whereas drug-resistant tumors adopted an immunosuppressive microenvironment with elevated MHC II-low macrophages and increased tumor cell PD-L1 expression. Excitingly, CDK4/6-MEK inhibition sensitized MPNSTs to anti-PD-L1 immune checkpoint blockade (ICB) with some mice showing complete tumor regression. CONCLUSIONS: CDK4/6-MEK inhibition induces a novel plasma cell-associated immune response and extended antitumor activity in MPNSTs, which dramatically enhances anti-PD-L1 therapy. These preclinical findings provide strong rationale for clinical translation of CDK4/6-MEK-ICB targeted therapies in MPNST as they may yield sustained antitumor responses and improved patient outcomes.


Assuntos
Neurofibrossarcoma , Camundongos , Humanos , Animais , Neurofibrossarcoma/tratamento farmacológico , Plasmócitos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno , Linhagem Celular Tumoral , Microambiente Tumoral , Quinase 4 Dependente de Ciclina
17.
Blood Adv ; 7(21): 6395-6410, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37224458

RESUMO

Deregulated expression of lineage-affiliated transcription factors (TFs) is a major mechanism of oncogenesis. However, how the deregulation of nonlineage affiliated TF affects chromatin to initiate oncogenic transcriptional programs is not well-known. To address this, we studied the chromatin effects imposed by oncogenic MAF as the cancer-initiating driver in the plasma cell cancer multiple myeloma. We found that the ectopically expressed MAF endows myeloma plasma cells with migratory and proliferative transcriptional potential. This potential is regulated by the activation of enhancers and superenhancers, previously inactive in healthy B cells and plasma cells, and the cooperation of MAF with the plasma cell-defining TF IRF4. Forced ectopic MAF expression confirms the de novo ability of oncogenic MAF to convert transcriptionally inert chromatin to active chromatin with the features of superenhancers, leading to the activation of the MAF-specific oncogenic transcriptome and the acquisition of cancer-related cellular phenotypes such as CCR1-dependent cell migration. These findings establish oncogenic MAF as a pioneer transcription factor that can initiate as well as sustain oncogenic transcriptomes and cancer phenotypes. However, despite its pioneer function, myeloma cells remain MAF-dependent, thus validating oncogenic MAF as a therapeutic target that would be able to circumvent the challenges of subsequent genetic diversification driving disease relapse and drug resistance.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Regulação da Expressão Gênica , Plasmócitos/metabolismo , Linfócitos B/metabolismo , Cromatina
18.
J Clin Immunol ; 43(7): 1543-1556, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37246174

RESUMO

BACKGROUND: The human CD19 antigen is expressed throughout B cell ontogeny with the exception of neoplastic plasma cells and a subset of normal plasma cells. CD19 plays a role in propagating signals from the B cell receptor and other receptors such as CXCR4 in mature B cells. Studies of CD19-deficient patients have confirmed its function during the initial stages of B cell activation and the production of memory B cells; however, its role in the later stages of B cell differentiation is unclear. OBJECTIVE: Using B cells from a newly identified CD19-deficient individual, we investigated the role of CD19 in the generation and function of plasma cells using an in vitro differentiation model. METHODS: Flow cytometry and long-read nanopore sequencing using locus-specific long-range amplification products were used to screen a patient with suspected primary immunodeficiency. Purified B cells from the patient and healthy controls were activated with CD40L, IL-21, IL-2, and anti-Ig, then transferred to different cytokine conditions to induce plasma cell differentiation. Subsequently, the cells were stimulated with CXCL12 to induce signalling through CXCR4. Phosphorylation of key downstream proteins including ERK and AKT was assessed by Western blotting. RNA-seq was also performed on in vitro differentiating cells. RESULTS: Long-read nanopore sequencing identified the homozygous pathogenic mutation c.622del (p.Ser208Profs*19) which was corroborated by the lack of CD19 cell surface staining. CD19-deficient B cells that are predominantly naïve generate phenotypically normal plasma cells with expected patterns of differentiation-associated genes and normal levels of CXCR4. Differentiated CD19-deficient cells were capable of responding to CXCL12; however, plasma cells derived from naïve B cells, both CD19-deficient and sufficient, had relatively diminished signaling compared to those generated from total B cells. Additionally, CD19 ligation on normal plasma cells results in AKT phosphorylation. CONCLUSION: CD19 is not required for generation of antibody-secreting cells or the responses of these populations to CXCL12, but may alter the response other ligands that require CD19 potentially affecting localization, proliferation, or survival. The observed hypogammaglobulinemia in CD19-deficient individuals is therefore likely attributable to the lack of memory B cells.


Assuntos
Antígenos CD19 , Plasmócitos , Humanos , Plasmócitos/metabolismo , Antígenos CD19/genética , Antígenos CD19/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos B , Receptores de Antígenos de Linfócitos B , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo
19.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176151

RESUMO

Chronic rhinosinusitis with nasal polyps (CRSwNP) has long been considered a benign, chronic inflammatory, and hyperplastic disease. Recent studies have shown that autoimmune-related mechanisms are involved in the pathology of nasal polyps. Activated plasma cells, eosinophils, basophils, innate type 2 lymphocytes, mast cells, and proinflammatory cytokine in polyp tissue indicate the mobilization of innate and adaptive immune pathways during polyp formation. The discovery of a series of autoantibodies further supports the autoimmune nature of nasal polyps. Local homeostasis dysregulation, infection, and chronic inflammation may trigger autoimmunity through several mechanisms, including autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, activation or inhibition of receptors, bystander activation, dysregulation of Toll-Like Receptors (TLRs), epitope spreading, autoantigens complementarity. In this paper, we elaborated on the microbiome-mediated mechanism, abnormal host immunity, and genetic changes to update the role of autoimmunity in the pathogenesis of chronic rhinosinusitis with nasal polyps.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Humanos , Pólipos Nasais/patologia , Autoimunidade , Inflamação/patologia , Sinusite/metabolismo , Doença Crônica , Plasmócitos/metabolismo , Autoantígenos , Rinite/patologia
20.
Blood Cancer J ; 13(1): 84, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217482

RESUMO

Multiple myeloma (MM) remains an incurable plasma cell (PC) malignancy. Although it is known that MM tumor cells display extensive intratumoral genetic heterogeneity, an integrated map of the tumor proteomic landscape has not been comprehensively evaluated. We evaluated 49 primary tumor samples from newly diagnosed or relapsed/refractory MM patients by mass cytometry (CyTOF) using 34 antibody targets to characterize the integrated landscape of single-cell cell surface and intracellular signaling proteins. We identified 13 phenotypic meta-clusters across all samples. The abundance of each phenotypic meta-cluster was compared to patient age, sex, treatment response, tumor genetic abnormalities and overall survival. Relative abundance of several of these phenotypic meta-clusters were associated with disease subtypes and clinical behavior. Increased abundance of phenotypic meta-cluster 1, characterized by elevated CD45 and reduced BCL-2 expression, was significantly associated with a favorable treatment response and improved overall survival independent of tumor genetic abnormalities or patient demographic variables. We validated this association using an unrelated gene expression dataset. This study represents the first, large-scale, single-cell protein atlas of primary MM tumors and demonstrates that subclonal protein profiling may be an important determinant of clinical behavior and outcome.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteômica , Plasmócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA